Data Just Right: Introduction to Large-Scale Data & Analytics Author: Michael Manoochehri | Language: English | ISBN:
B00H0FEU04 | Format: PDF
Data Just Right: Introduction to Large-Scale Data & Analytics Description
Making Big Data Work: Real-World Use Cases and Examples, Practical Code, Detailed Solutions
Large-scale data analysis is now vitally important to virtually every business. Mobile and social technologies are generating massive datasets; distributed cloud computing offers the resources to store and analyze them; and professionals have radically new technologies at their command, including NoSQL databases. Until now, however, most books on “Big Data” have been little more than business polemics or product catalogs. Data Just Right is different: It’s a completely practical and indispensable guide for every Big Data decision-maker, implementer, and strategist.
Michael Manoochehri, a former Google engineer and data hacker, writes for professionals who need practical solutions that can be implemented with limited resources and time. Drawing on his extensive experience, he helps you focus on building applications, rather than infrastructure, because that’s where you can derive the most value.
Manoochehri shows how to address each of today’s key Big Data use cases in a cost-effective way by combining technologies in hybrid solutions. You’ll find expert approaches to managing massive datasets, visualizing data, building data pipelines and dashboards, choosing tools for statistical analysis, and more. Throughout, the author demonstrates techniques using many of today’s leading data analysis tools, including Hadoop, Hive, Shark, R, Apache Pig, Mahout, and Google BigQuery.
Coverage includes
Mastering the four guiding principles of Big Data success—and avoiding common pitfalls
Emphasizing collaboration and avoiding problems with siloed data
Hosting and sharing multi-terabyte datasets efficiently and economically
“Building for infinity” to support rapid growth
Developing a NoSQL Web app with Redis to collect crowd-sourced data
Running distributed queries over massive datasets with Hadoop, Hive, and Shark
Building a data dashboard with Google BigQuery
Exploring large datasets with advanced visualization
Implementing efficient pipelines for transforming immense amounts of data
Automating complex processing with Apache Pig and the Cascading Java library
Applying machine learning to classify, recommend, and predict incoming information
Using R to perform statistical analysis on massive datasets
Building highly efficient analytics workflows with Python and Pandas
Establishing sensible purchasing strategies: when to build, buy, or outsource
Previewing emerging trends and convergences in scalable data technologies and the evolving role of the Data Scientist
- File Size: 6336 KB
- Print Length: 225 pages
- Simultaneous Device Usage: Up to 5 simultaneous devices, per publisher limits
- Publisher: Addison-Wesley Professional; 1 edition (November 30, 2013)
- Sold by: Amazon Digital Services, Inc.
- Language: English
- ASIN: B00H0FEU04
- Text-to-Speech: Enabled
X-Ray:
- Lending: Not Enabled
- Amazon Best Sellers Rank: #34,363 Paid in Kindle Store (See Top 100 Paid in Kindle Store)
- #4
in Books > Computers & Technology > Databases > Beginning & Introductory - #7
in Kindle Store > Kindle eBooks > Computers & Technology > Databases - #10
in Books > Computers & Technology > Databases > Database Design
- #4
in Books > Computers & Technology > Databases > Beginning & Introductory - #7
in Kindle Store > Kindle eBooks > Computers & Technology > Databases - #10
in Books > Computers & Technology > Databases > Database Design
Hive, Hadoop, Shark, Dremel, BigQuery, SciPy, NumPy, Pandas, R, Pig... whether you are new or a seasoned big data expert, there is a big and growing universe of keywords to understand. In this book Manoochehri manages to give a through review on the whys and hows, giving the reader just the right depth in each topic to understand the motivation for each of these different technologies, how they are different to each other, and why you would want to use them. I love that he's not afraid to jump and write code, as - when you do it just right - a few lines of code are much more illustrative than a picture or block of texts would do.
Totally recommended. If you want to learn Hadoop, buy a Hadoop book - or an R book if you want to go deeper in that topic. But if you want to understand the current big data universe, how the tools interrelate between each other, and go from data generation to storage to analysis to visualization - this is the book.
By Felipe H
If you work with expensive enterprise strength data management/analysis products like SAS and Oracle and you want a book that will give you a map to cover the open source tools for dealing with "big data" (i.e., Hadoop, Hive, and Pig) get this. It does an amazingly good job of explaining the utility of the various tools that are used to manage *HUGE* data. Everything from the practical concerns in designing web facing applications to analytic data-sets are covered at the perfect depth for someone who knows a bit about data and databases. Even if you are not a programmer, the author does an exceptional job of explaining things from the ground up without babying the reader (e.g., what are the advantages of using CSV files vs XML vs JSON vs Thrift vs Avro). There are code snippets scattered throughout that are useful for comparing and contrasting if you know some programming languages (e.g., SQL queries vs HiveQL) but the book does not attempt to explain the code in great detail. So, you end up with the outline of what a tool does without getting bogged down in the gory details. If you want to go deeper into the solutions the book is full of references to seminal white papers and other external references so you can expand on what is covered.
So, if you keep hearing about things like Hadoop, noSQL, Python, SciPy, Pandas, R and you just want to learn "what is the big deal" or "why bother" learning yet another tool, this is the perfect book.
By I Teach Typing
Data Just Right: Introduction to Large-Scale Data & Analytics Preview
Link
Please Wait...